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Abstract
The spectrum of the transfer matrices constructed from the spectral parameter
dependent Temperley–Lieb R-matrix is found using functional relations
identical to those of the spin 1/2 XXZ-magnet.

PACS numbers: 05.50.+q, 75.10.Hk, 03.65.Fd

It is well known that the Temperley–Lieb algebra [1, 2] gives rise to a constant solution of the
Yang–Baxter equation (see e.g. [3] and references therein)

Ř12Ř23Ř12 = Ř23Ř12Ř23 (1)

where Ř12 = Ř ⊗ I, Ř23 = I ⊗ Ř, and Ř is a constant R-matrix (Ř ∈ End(Cn ⊗ C
n)) defined

by the Temperley–Lieb idempotent X

Ř = qI + X X2 = −
(

q +
1

q

)
X (2)

satisfying the Hecke condition (we suppose that q is not a root of unity)

Ř2 =
(

q − 1

q

)
Ř + I. (3)

The Temperley–Lieb algebra (T LN) has N −1 generators {1, X1, X2, . . . , XN−1} subject
to the relations (d = −ν(q) := −(q + 1/q))

X2
k = dXk

XkXk±1Xk = Xk (4)

XjXk = XkXj |j − k| > 1.

Using the FRT formalism [4, 5], a matrix realization of T LN and the R-matrix (2) one can
define a quantum group A(R) while the Baxterization procedure results in a spectral parameter
dependent R-matrix

Ř(u) = uŘ − 1

u
Ř−1. (5)

Due to the Hecke condition (3) this R-matrix has the regularity property [6]

Ř(1) =
(

q − 1

q

)
I (6)
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although usually (n > 2) it is not a quasiclassical solution of the YBE. Hence, an integrable
quantum spin system constructed from the L-operator

L(u) = R(u) = PŘ(u) =
(

uq − 1

uq

)
P +

(
u − 1

u

)
PX (7)

where P ∈ End(Cn ⊗ C
n) is the permutation operator, has a local Hamiltonian with nearest-

neighbour interaction

H =
N∑

k=1

Xk (8)

subject to the periodic boundary condition: XN := XN1 ∈ End
(
C

n
N ⊗ C

n
1

)
or free ends.

Particular realizations of these spin systems can be found in a variety of papers (see [7–11]
and references therein) as well as the spectra of some spin Hamiltonians (n = 3) obtained by
coordinate Bethe ansätze (see, e.g., [12, 13]).

In this letter, we analyse the spectrum of the Hamiltonian (8) and corresponding transfer
matrix t (1)(u) using the fusion procedure and functional relations [6] for transfer matrices
t (m)(u) in higher representations Vm of quantum algebra dual to A(R). The found spectrum
coincides with the spectrum of the XXZ-model, however its degeneracy and the Bethe states
depend heavily on a realization of the idempotent X ∈ End(Cn ⊗ C

n). Solutions of the
reflection equation describing non-periodic boundary conditions are also given.

We fix a local realization of the T LN algebra {1, X1, X2, . . . , XN−1} in the (quantum)
space

HN = ⊗N
k=1C

n
k . (9)

This realization is defined by an invertible n×n matrix b, b̄ := b−1. This matrix can be treated
as a vector of the n2-dimensional space C

n ⊗ C
n with components bij , i, j = 1, 2, . . . , n, and

the rank 1 matrix X ∈ End(Cn ⊗ C
n) (the idempotent)

X = b ⊗ b̄ Xab;cd = babb̄cd (10)

is a generator of T LN with Xk acting nontrivially on two factors C
n
k ⊗ C

n
k+1 of HN .

The Hecke or T LN algebra parameter q entering Ř is defined by the matrix b

ν(q) :=
(

q +
1

q

)
= −

∑
a,b

babb̄ab = −Tr bt b̄.

The R-matrix R(u) = PŘ(u) and the L-operator (7) satisfy the YBE with spectral
parameter

Ra1a2(u/w)La1j (u)La2j (w) = La2j (w)La1j (u)Ra1a2(u/w) (11)

where the subscripts a1, a2 refer to the two auxiliary spaces while j refers to the quantum
space C

n
j at site j [5, 6]. It is easy to see that the R-matrix (5) (this is a braid group form)

Řa1a2(u) =
(

uq − 1

uq

)
Ia1a2 +

(
u − 1

u

)
Xa1a2 = ω(uq)(I − P) − ω(u/q)P (12)

has two degeneracy points u = q±1

Ř(q−1) = ω(q2)P Ř(q) = ω(q2)(I − P) (13)

where P = −X/ν(q) is the rank 1 projector P 2 = P , and ν(q) = q + 1/q, ω(q) := q − 1/q.
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Using the standard formalism of the quantum inverse scattering method (see, e.g., [5, 6])
we define the monodromy matrix

T (u) = LaN(u)LaN−1(u) · · · La1(u) =
N∏

j=1

Laj (u) (14)

and the transfer matrix (the generating function of mutually commuting integrals)

t (u) = Tr T (u) = Tr(a)

N∏
j=1

Laj (u) (15)

as operators on the space C
n
a ⊗ HN and HN correspondingly. The monodromy matrix T (u)

satisfies relation (11). Various properties of T (u) and t (u) follow from the structure of the
Temperley–Lieb R-matrix (L-operator) (7). For example, due to the regularity (6) the transfer
matrix t (u) at u = 1 is the right shift operator

t (1) = ω(q)NP12P23 · · ·PN−1N = ω(q)NU (16)

and due to the degeneracy at u = q−1

t (q−1) = (−ω(q))NPN−1N · · ·P23P12 = (−ω(q))NU−1 (17)

is the left shift of the quantum space HN .

It is not difficult to find a bare vacuum or a reference state � used in the algebraic Bethe
ansatz of the quantum inverse scattering method. The transfer matrix t (u) (26) is the sum of
2N terms two of which are the shift operators (16), (17)

t (u) = Tr T (u) = ω(uq)NU +
∑

j

Yj + ω(u)NU−1. (18)

Other terms Yj have at least one operator factor PakXakPak−1 which yields

(PakXakPak−1)iaik ik−1jajkjk−1 = bikia b̄jk−1jk
δik−1ja

(19)

as matrix entries of this operator at the space C
2
a ⊗ C

2
k ⊗ C

2
k−1 under the trace over the

auxiliary space C
2
a . Taking a homogeneous vector � := ⊗N

1 w invariant under the shift

U±1 ⊗N
1 w = ⊗N

1 w = � (20)

combined with the local vectors w ∈ C
n satisfying

(b̄, w ⊗ w) =
∑

b̄ij wiwj = 0 (21)

one gets an eigenvector of t (u) (15), (18)

t (u)� = �0(u)� �0(u) = ω(uq)N + ω(u)N . (22)

There are many solutions of equation (21), e.g. if b̄11 = 0, then one can take wt =
(1, 0, . . . , 0), and � is the state with ‘all spins up’ wi = δi1. However, construction of
excited eigenstates by algebraic or coordinate Bethe ansätze depends on the structure of the
vector b.

The degeneracy points (13) and the fusion procedure [6, 14] give rise to monodromy
and transfer matrices T (m)(u), t (m)(u) = TrVm

T (m)(u),m = 1, 2, . . . in higher dimensional
representation spaces Vm of the underlying (dual) quantum group defined by the FRT formalism
and higher R-matrices. In particular, denoting the initial (fundamental) representation by
V1 := C

n the next representation V2 is (n2 − 1)-dimensional and follows from the Clebsch–
Gordan decomposition

V1 ⊗ V1 = V2 ⊕ V0 (23)
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with dimV0 = 1. The corresponding monodromy matrix T (2)(u) is

T (2)(u) = (ω(q2))−1Ř12(q)T
(1)

1 (uq)T
(1)

2 (u) = P+T
(1)

1 (u)T
(1)

2 (uq)P+ (24)

where the subscripts denote two auxiliary spaces and the superscripts refer to the
representations Vm,m = 1, 2. The notation P+ = I − P is also introduced for the projector
on the space V2 in the CG expansion (23). The projection on the one-dimensional space V0

yields the value of a multiplicative central element

(d(u))N := (ω(q2))−1Ř12(q
−1)T

(1)
1 (u)T

(1)
2 (uq) = (ω(u)ω(uq2))NI. (25)

Dimensions of the representation spaces Vm are given by values of the Chebyshev
polynomials of the 2D kind (dimVm = pm(n)) defined by the recurrence relations:

pm+1(x) + pm−1(x) = xpm(x) p0(x) = 1 p−1(x) = 0. (26)

However, despite the different dimensions (26) the structure of the Clebsch–Gordan
decomposition of tensor products of these representations is identical to the sl(2) case.
Hence, one gets for the transfer matrices t (m)(u) in higher dimensional auxiliary spaces
Vm functional relations identical to the case of the XXZ-model [6, 15, 16]

t (1)(u)t (1)(uq) = (ω(uq))N t(2)(u) + (d(u))NI

t(1)(u)t (m)(uq) = (ω(uq))N t(m+1)(u) + (ω(u))N t(m−1)(uq2). (27)

We conclude that the structure of the fusion relations, the analytical properties of the transfer
matrix (15) and its eigenvalue (22) on the bare vacuum (20) coincide with those of the spin
1/2 XXZ-magnet. Hence, according to the analytic Bethe ansatz [17] the spectrum of t (1)(u)

of the spin system related to the R-matrix (5) is also the same:

�
(
u; {vj }M1

) = ω(uq)N
M∏

j=1

ω(u/qvj )

ω(u/vj )
+ ω(u)N

M∏
j=1

ω(uq/vj )

ω(u/vj )
. (28)

An algebraic construction of eigenstates by an algebraic Bethe ansatz (ABA) depends on
the vector bij . In particular, taking for n = 3, bij = pj−2δi4−j one reproduces a deformed
spin 1 chain (see, e.g., [12]). In this case a modified ABA can be constructed using the
entry T13(v) as an elementary magnon creation operator over the ferromagnetic vacuum state
(‘all spins up’). The limit p → 1 yields the sl(2)-invariant Hamiltonian density (Sk, Sk+1)

2

[18]. One can also employ inversion relations to get spectra of the transfer matrices in the
thermodynamic limit [9].

A few remarks can be made on solutions to the reflection equation (RE) describing non-
periodic boundary conditions preserving integrability [19]. The constant solution of the RE
(in the braid group form)

Ř12K2Ř12K2 = K2Ř12K2Ř12 (29)

with Ř (2) is given by n × n matrix K with algebraic entries satisfying characteristic
equation [20]

qK2 + c1K = − 1

ν(q)

(
c2

1 + qc2
)
I. (30)

The elements c1, c2 are central [cα,Kjk] = 0, α = 1, 2; j, k = 1, 2, . . . , n. They are given by
the quantum trace [4]

cα = Trq Kα = Tr bt b̄Kα =
∑
i,j,k

bij b̄ik(K
α)kj . (31)
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A spectral parameter dependent solution can be obtained by a Baxterization procedure similar
to that used for constructing the R-matrix (5) (see, e.g., [21]). Then the free end Hamiltonian
(8) and an appropriate Sklyanin transfer matrix will be a quantum group invariant [22].

Concluding, it is natural to put forward a conjecture that the spectrum of a spin system
associated with the Hecke R-matrix with minimal rank of two projectors greater than 1 is also
defined by the corresponding fusion procedure and the functional relations.

Useful discussions with R Kashaev and A Mudrov are highly appreciated. The author
would like to thank CERN for generous hospitality. This work has been partially supported
by the grant RFBR-03-01-00593 and the programme ‘Mathematical methods in nonlinear
dynamics’ of RAN.
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